Your browser doesn't support javascript.
Mostrar: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
3.
J Virol ; 96(8): e0016922, 2022 04 27.
Artigo em Inglês | MEDLINE | ID: covidwho-1765080

RESUMO

Severe acute respiratory syndrome coronavirus (SARS-CoV-1) and SARS-CoV-2 are highly pathogenic to humans and have caused pandemics in 2003 and 2019, respectively. Genetically diverse SARS-related coronaviruses (SARSr-CoVs) have been detected or isolated from bats, and some of these viruses have been demonstrated to utilize human angiotensin-converting enzyme 2 (ACE2) as a receptor and to have the potential to spill over to humans. A pan-sarbecovirus vaccine that provides protection against SARSr-CoV infection is urgently needed. In this study, we evaluated the protective efficacy of an inactivated SARS-CoV-2 vaccine against recombinant SARSr-CoVs carrying two different spike proteins (named rWIV1 and rRsSHC014S, respectively). Although serum neutralizing assays showed limited cross-reactivity between the three viruses, the inactivated SARS-CoV-2 vaccine provided full protection against SARS-CoV-2 and rWIV1 and partial protection against rRsSHC014S infection in human ACE2 transgenic mice. Passive transfer of SARS-CoV-2-vaccinated mouse sera provided low protection for rWIV1 but not for rRsSHC014S infection in human ACE2 mice. A specific cellular immune response induced by WIV1 membrane protein peptides was detected in the vaccinated animals, which may explain the cross-protection of the inactivated vaccine. This study shows the possibility of developing a pan-sarbecovirus vaccine against SARSr-CoVs for future preparedness. IMPORTANCE The genetic diversity of SARSr-CoVs in wildlife and their potential risk of cross-species infection highlight the necessity of developing wide-spectrum vaccines against infection of various SARSr-CoVs. In this study, we tested the protective efficacy of the SARS-CoV-2 inactivated vaccine (IAV) against two SARSr-CoVs with different spike proteins in human ACE2 transgenic mice. We demonstrate that the SARS-CoV-2 IAV provides full protection against rWIV1 and partial protection against rRsSHC014S. The T-cell response stimulated by the M protein may account for the cross protection against heterogeneous SARSr-CoVs. Our findings suggest the feasibility of the development of pan-sarbecovirus vaccines, which can be a strategy of preparedness for future outbreaks caused by novel SARSr-CoVs from wildlife.


Assuntos
Vacinas contra COVID-19 , Infecções por Coronavirus , Proteção Cruzada , Glicoproteína da Espícula de Coronavírus , Vacinas de Produtos Inativados , Enzima de Conversão de Angiotensina 2/genética , Animais , COVID-19/prevenção & controle , Vacinas contra COVID-19/imunologia , Quirópteros , Infecções por Coronavirus/imunologia , Infecções por Coronavirus/prevenção & controle , Proteção Cruzada/imunologia , Humanos , Camundongos , Camundongos Transgênicos , Coronavírus Relacionado à Síndrome Respiratória Aguda Grave/genética , Coronavírus Relacionado à Síndrome Respiratória Aguda Grave/metabolismo , SARS-CoV-2/genética , Glicoproteína da Espícula de Coronavírus/genética , Glicoproteína da Espícula de Coronavírus/imunologia , Vacinas de Produtos Inativados/imunologia , Zoonoses Virais/prevenção & controle
5.
Virulence ; 12(1): 2777-2786, 2021 12.
Artigo em Inglês | MEDLINE | ID: covidwho-1565872

RESUMO

Several animal species, including ferrets, hamsters, monkeys, and raccoon dogs, have been shown to be susceptible to experimental infection by the human severe acute respiratory syndrome coronaviruses, such as SARS-CoV and SARS-CoV-2, which were responsible for the 2003 SARS outbreak and the 2019 coronavirus disease (COVID-19) pandemic, respectively. Emerging studies have shown that SARS-CoV-2 natural infection of pet dogs and cats is also possible, but its prevalence is not fully understood. Experimentally, it has been demonstrated that SARS-CoV-2 replicates more efficiently in cats than in dogs and that cats can transmit the virus through aerosols. With approximately 470 million pet dogs and 370 million pet cats cohabitating with their human owners worldwide, the finding of natural SARS-CoV-2 infection in these household pets has important implications for potential zoonotic transmission events during the COVID-19 pandemic as well as future SARS-related outbreaks. Here, we describe some of the ongoing worldwide surveillance efforts to assess the prevalence of SARS-CoV-2 exposure in companion, captive, wild, and farmed animals, as well as provide some perspectives on these efforts including the intra- and inter-species coronavirus transmissions, evolution, and their implications on the human-animal interface along with public health. Some ongoing efforts to develop and implement a new COVID-19 vaccine for animals are also discussed. Surveillance initiatives to track SARS-CoV-2 exposures in animals are necessary to accurately determine their impact on veterinary and human health, as well as define potential reservoir sources of the virus and its evolutionary and transmission dynamics.


Assuntos
Animais Domésticos/virologia , Animais Selvagens/virologia , Animais de Zoológico/virologia , COVID-19/veterinária , Animais de Estimação/virologia , SARS-CoV-2/isolamento & purificação , Animais , COVID-19/epidemiologia , COVID-19/prevenção & controle , COVID-19/transmissão , Vacinas contra COVID-19 , Reservatórios de Doenças/estatística & dados numéricos , Reservatórios de Doenças/virologia , Furões/virologia , Humanos , Prevalência , Zoonoses Virais/epidemiologia , Zoonoses Virais/prevenção & controle , Zoonoses Virais/virologia
6.
Curr Top Med Chem ; 20(11): 915-962, 2020.
Artigo em Inglês | MEDLINE | ID: covidwho-1453165

RESUMO

BACKGROUND: Emerging viral zoonotic diseases are one of the major obstacles to secure the "One Health" concept under the current scenario. Current prophylactic, diagnostic and therapeutic approaches often associated with certain limitations and thus proved to be insufficient for customizing rapid and efficient combating strategy against the highly transmissible pathogenic infectious agents leading to the disastrous socio-economic outcome. Moreover, most of the viral zoonoses originate from the wildlife and poor knowledge about the global virome database renders it difficult to predict future outbreaks. Thus, alternative management strategy in terms of improved prophylactic vaccines and their delivery systems; rapid and efficient diagnostics and effective targeted therapeutics are the need of the hour. METHODS: Structured literature search has been performed with specific keywords in bibliographic databases for the accumulation of information regarding current nanomedicine interventions along with standard books for basic virology inputs. RESULTS: Multi-arrayed applications of nanomedicine have proved to be an effective alternative in all the aspects regarding the prevention, diagnosis, and control of zoonotic viral diseases. The current review is focused to outline the applications of nanomaterials as anti-viral vaccines or vaccine/drug delivery systems, diagnostics and directly acting therapeutic agents in combating the important zoonotic viral diseases in the recent scenario along with their potential benefits, challenges and prospects to design successful control strategies. CONCLUSION: This review provides significant introspection towards the multi-arrayed applications of nanomedicine to combat several important zoonotic viral diseases.


Assuntos
Sistemas de Liberação de Medicamentos/métodos , Vacinas Virais/química , Zoonoses Virais/diagnóstico , Zoonoses Virais/prevenção & controle , Zoonoses Virais/terapia , Vírus/efeitos dos fármacos , Animais , Animais Selvagens , Técnicas Biossensoriais , Portadores de Fármacos/química , Composição de Medicamentos , Liberação Controlada de Fármacos , Humanos , Nanomedicina , Nanopartículas/química , Polímeros/química , Polímeros/metabolismo , Transfecção , Vírus/metabolismo
7.
Front Immunol ; 12: 629636, 2021.
Artigo em Inglês | MEDLINE | ID: covidwho-1344259

RESUMO

Outbreaks that occur as a result of zoonotic spillover from an animal reservoir continue to highlight the importance of studying the disease interface between species. One Health approaches recognise the interdependence of human and animal health and the environmental interplay. Improving the understanding and prevention of zoonotic diseases may be achieved through greater consideration of these relationships, potentially leading to better health outcomes across species. In this review, special emphasis is given on the emerging and outbreak pathogen Crimean-Congo Haemorrhagic Fever virus (CCHFV) that can cause severe disease in humans. We discuss the efforts undertaken to better understand CCHF and the importance of integrating veterinary and human research for this pathogen. Furthermore, we consider the use of closely related nairoviruses to model human disease caused by CCHFV. We discuss intervention approaches with potential application for managing CCHFV spread, and how this concept may benefit both animal and human health.


Assuntos
Febre Hemorrágica da Crimeia/prevenção & controle , Animais , Modelos Animais de Doenças , Reservatórios de Doenças , Vírus da Febre Hemorrágica da Crimeia-Congo/patogenicidade , Febre Hemorrágica da Crimeia/epidemiologia , Febre Hemorrágica da Crimeia/transmissão , Humanos , Vacinas Virais/imunologia , Zoonoses Virais/prevenção & controle
9.
Nature ; 597(7874): 103-108, 2021 09.
Artigo em Inglês | MEDLINE | ID: covidwho-1316713

RESUMO

The recent emergence of SARS-CoV-2 variants of concern1-10 and the recurrent spillovers of coronaviruses11,12 into the human population highlight the need for broadly neutralizing antibodies that are not affected by the ongoing antigenic drift and that can prevent or treat future zoonotic infections. Here we describe a human monoclonal antibody designated S2X259, which recognizes a highly conserved cryptic epitope of the receptor-binding domain and cross-reacts with spikes from all clades of sarbecovirus. S2X259 broadly neutralizes spike-mediated cell entry of SARS-CoV-2, including variants of concern (B.1.1.7, B.1.351, P.1, and B.1.427/B.1.429), as well as a wide spectrum of human and potentially zoonotic sarbecoviruses through inhibition of angiotensin-converting enzyme 2 (ACE2) binding to the receptor-binding domain. Furthermore, deep-mutational scanning and in vitro escape selection experiments demonstrate that S2X259 possesses an escape profile that is limited to a single substitution, G504D. We show that prophylactic and therapeutic administration of S2X259 protects Syrian hamsters (Mesocricetus auratus) against challenge with the prototypic SARS-CoV-2 and the B.1.351 variant of concern, which suggests that this monoclonal antibody is a promising candidate for the prevention and treatment of emergent variants and zoonotic infections. Our data reveal a key antigenic site that is targeted by broadly neutralizing antibodies and will guide the design of vaccines that are effective against all sarbecoviruses.


Assuntos
Anticorpos Monoclonais/imunologia , Anticorpos Monoclonais/uso terapêutico , Anticorpos Antivirais/imunologia , Anticorpos Amplamente Neutralizantes/imunologia , Anticorpos Amplamente Neutralizantes/uso terapêutico , COVID-19/prevenção & controle , SARS-CoV-2/classificação , SARS-CoV-2/imunologia , Animais , Anticorpos Monoclonais/química , Anticorpos Antivirais/química , Anticorpos Antivirais/uso terapêutico , Anticorpos Amplamente Neutralizantes/química , COVID-19/imunologia , COVID-19/virologia , Reações Cruzadas/imunologia , Modelos Animais de Doenças , Feminino , Humanos , Evasão da Resposta Imune/genética , Evasão da Resposta Imune/imunologia , Mesocricetus/imunologia , Mesocricetus/virologia , Mutação , Testes de Neutralização , SARS-CoV-2/química , SARS-CoV-2/genética , Zoonoses Virais/imunologia , Zoonoses Virais/prevenção & controle , Zoonoses Virais/virologia
10.
Nat Rev Immunol ; 21(12): 815-822, 2021 12.
Artigo em Inglês | MEDLINE | ID: covidwho-1275932

RESUMO

Since the initial use of vaccination in the eighteenth century, our understanding of human and animal immunology has greatly advanced and a wide range of vaccine technologies and delivery systems have been developed. The COVID-19 pandemic response leveraged these innovations to enable rapid development of candidate vaccines within weeks of the viral genetic sequence being made available. The development of vaccines to tackle emerging infectious diseases is a priority for the World Health Organization and other global entities. More than 70% of emerging infectious diseases are acquired from animals, with some causing illness and death in both humans and the respective animal host. Yet the study of critical host-pathogen interactions and the underlying immune mechanisms to inform the development of vaccines for their control is traditionally done in medical and veterinary immunology 'silos'. In this Perspective, we highlight a 'One Health vaccinology' approach and discuss some key areas of synergy in human and veterinary vaccinology that could be exploited to accelerate the development of effective vaccines against these shared health threats.


Assuntos
Doenças Transmissíveis Emergentes/imunologia , Doenças Transmissíveis Emergentes/prevenção & controle , Reações Cruzadas/imunologia , Vacinação , Vacinas/imunologia , Zoonoses Virais/imunologia , Zoonoses Virais/prevenção & controle , Animais , COVID-19/epidemiologia , COVID-19/imunologia , COVID-19/prevenção & controle , Humanos , SARS-CoV-2/imunologia , Especificidade da Espécie , Zoonoses Virais/transmissão
12.
Proc Natl Acad Sci U S A ; 118(12)2021 03 23.
Artigo em Inglês | MEDLINE | ID: covidwho-1117490

RESUMO

The pandemic of COVID-19, caused by SARS-CoV-2, is a major global health threat. Epidemiological studies suggest that bats (Rhinolophus affinis) are the natural zoonotic reservoir for SARS-CoV-2. However, the host range of SARS-CoV-2 and intermediate hosts that facilitate its transmission to humans remain unknown. The interaction of coronavirus with its host receptor is a key genetic determinant of host range and cross-species transmission. SARS-CoV-2 uses angiotensin-converting enzyme 2 (ACE2) as the receptor to enter host cells in a species-dependent manner. In this study, we characterized the ability of ACE2 from diverse species to support viral entry. By analyzing the conservation of five residues in two virus-binding hotspots of ACE2 (hotspot 31Lys and hotspot 353Lys), we predicted 80 ACE2 proteins from mammals that could potentially mediate SARS-CoV-2 entry. We chose 48 ACE2 orthologs among them for functional analysis, and showed that 44 of these orthologs-including domestic animals, pets, livestock, and animals commonly found in zoos and aquaria-could bind the SARS-CoV-2 spike protein and support viral entry. In contrast, New World monkey ACE2 orthologs could not bind the SARS-CoV-2 spike protein and support viral entry. We further identified the genetic determinant of New World monkey ACE2 that restricts viral entry using genetic and functional analyses. These findings highlight a potentially broad host tropism of SARS-CoV-2 and suggest that SARS-CoV-2 might be distributed much more widely than previously recognized, underscoring the necessity to monitor susceptible hosts to prevent future outbreaks.


Assuntos
Enzima de Conversão de Angiotensina 2/genética , COVID-19/veterinária , Receptores Virais/genética , SARS-CoV-2/genética , Enzima de Conversão de Angiotensina 2/metabolismo , Animais , COVID-19/genética , COVID-19/metabolismo , COVID-19/virologia , Especificidade de Hospedeiro , Humanos , Pandemias/prevenção & controle , Peptidil Dipeptidase A/genética , Peptidil Dipeptidase A/metabolismo , Filogenia , Ligação Proteica , Receptores Virais/metabolismo , Glicoproteína da Espícula de Coronavírus/genética , Glicoproteína da Espícula de Coronavírus/metabolismo , Tropismo Viral , Zoonoses Virais/genética , Zoonoses Virais/prevenção & controle , Zoonoses Virais/virologia , Ligação Viral , Internalização do Vírus
13.
Curr Opin Pulm Med ; 27(3): 146-154, 2021 05 01.
Artigo em Inglês | MEDLINE | ID: covidwho-1116526

RESUMO

PURPOSE OF REVIEW: Severe acute respiratory syndrome-coronaviruses-2 (SARS-CoV-2), the cause of coronavirus disease 2019 (COVID-19), emerged as a new zoonotic pathogen of humans at the end of 2019 and rapidly developed into a global pandemic. Over 106 million COVID-19 cases including 2.3 million deaths have been reported to the WHO as of February 9, 2021. This review examines the epidemiology, transmission, clinical features, and phylogenetics of three lethal zoonotic coronavirus infections of humans: SARS-CoV-1, SARS-CoV-2, and The Middle East respiratory syndrome coronavirus (MERS-COV). RECENT FINDINGS: Bats appear to be the common natural source of SARS-like CoV including SARS-CoV-1 but their role in SARS-CoV-2 and MERS-CoV remains unclear. Civet cats and dromedary camels are the intermediary animal sources for SARS-CoV-1 and MERS-CoV infection, respectively whereas that of SARS-CoV-2 remains unclear. SARS-CoV-2 viral loads peak early on days 2-4 of symptom onset and thus high transmission occurs in the community, and asymptomatic and presymptomatic transmission occurs commonly. Nosocomial outbreaks are hallmarks of SARS-CoV-1 and MERS-CoV infections whereas these are less common in COVID-19. Several COVID-19 vaccines are now available. SUMMARY: Of the three lethal zoonotic coronavirus infections of humans, SARS-CoV-2 has caused a devastating global pandemic with over a million deaths. The emergence of genetic variants, such as D614G, N501Y (variants 1 and 2), has led to an increase in transmissibility and raises concern about the possibility of re-infection and impaired vaccine response. Continued global surveillance is essential for both SARS-CoV-2 and MERS-CoV, to monitor changing epidemiology due to viral variants.


Assuntos
COVID-19 , Controle de Doenças Transmissíveis , Infecções por Coronavirus , Síndrome Respiratória Aguda Grave , Animais , COVID-19/epidemiologia , COVID-19/prevenção & controle , COVID-19/transmissão , Cadeia de Infecção , Quirópteros/virologia , Controle de Doenças Transmissíveis/métodos , Controle de Doenças Transmissíveis/organização & administração , Infecções por Coronavirus/epidemiologia , Infecções por Coronavirus/prevenção & controle , Infecções por Coronavirus/transmissão , Humanos , Filogenia , SARS-CoV-2/isolamento & purificação , SARS-CoV-2/patogenicidade , Síndrome Respiratória Aguda Grave/epidemiologia , Síndrome Respiratória Aguda Grave/prevenção & controle , Síndrome Respiratória Aguda Grave/transmissão , Zoonoses Virais/epidemiologia , Zoonoses Virais/prevenção & controle , Zoonoses Virais/transmissão
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA